请登录 免费注册

热搜:通用机械五金工具仪器仪表安防监控

频道
通用机械 电子元器件 行业设备 五金工具 电工电气 仪器仪表 安防监控 专用汽车 照明灯具 化工原料 涂料 塑胶 建筑原料 皮革 冶金
推荐阅读

您的位置:首页 > 技术文献 > 技术交流 > 你不可不知道的电离辐射、核辐射知识

标题你不可不知道的电离辐射、核辐射知识

   

提供者:厦门欣锐仪器仪表有限公司    发布时间:2015/9/17   阅读次数:3949次 >>进入该公司展台
 辐射指的是能量以波或是次原子粒子移动的型态传送,辐射之能量从辐射源向外所有方向直线放射。一般可依其能量的高低及电离物质的能力分类为电离辐射和非电离辐射。

 

电离辐射又可称为核辐射或放射性辐射,主要是指波长短、频率高、能量高的射线(粒子或波的双重形式)。电离辐射可以从原子分子里面电离过程中作用出至少一个电子。电离辐射包含:α射线(α粒子)、β射线(β粒子)、中子等高能粒子流与γ射线、X射线等高能电磁波,而被称为宇宙射线的高能粒子射线则两者皆有。

电离辐射对人体的危害性极大,因为一般电离辐射是看不到的,而具有放射性的微尘极其细小不易被察觉,因而受害者可能会在不知不觉中被过量照射或吸入大量放射微尘。在短时间内过量照射或吸入大量放射微尘会引起急性放射病,可出现恶心、呕吐、腹痛和脱发等症状,其造血功能、消化系统和神经系统亦可能出现异常;而放射性元素长期超量蓄积在体内,可引起慢性放射病。过量电离辐射有致癌和致畸作用。

电离辐射和电磁辐射背后是一个复杂、专业的系统知识,要想正确了解这两种辐射以及它人间各自的危害,我们需要从多方面来认识它们,下面是一些关于电离辐射与电磁辐射方面的基础知识,希望有助于初学者快速掌握它们。

·                                 天然放射性来源有哪些?

环境中天然辐射本底主要由宇宙射线、宇生放射性核素和原生放射性核素发射的辐射三部分组成。

宇宙射线主要来源于地球的外层空间。为了探明宇宙射线的来源,有人曾做过实验,把一个装有核辐射探测装置的大气球从海平面升至高空,观察电离辐射粒子注量率与海平面高度的关系。结果发现,当海拨高度低于700m时,粒子注量率随高度上升而急剧下降。当气球高度超过700m时,粒子注量率随高度的升高而迅速增加。此外,人们还发现,当太阳发生耀斑活动时,地球测得的宇宙射线强度明显增强,这一现象证明宇宙射线产生于地球以外的空间。

宇宙射线有初级和次级之分。初级宇宙射线是指从外层空间射到地球大气层的高能辐射。初级宇宙射线按其来源不同,又可分为"初级银河系宇宙射线""初级太阳宇宙射线"。不过,前者是初级宇宙射线的来源。

初级银河宇宙射线主要由高能质子组成(~87%),并伴有10%左右的氦核,其余为少量的重粒子、电子、光子和中微了。初级宇宙射线具有极大的动能,因此,它们的贯穿能力极强。初级太阳宇宙射线主要是指太阳发生耀斑时释放出来的带电粒子,大部分是质子和α粒子。不过,这些粒子的能量较低,通常对地球表面的辐射剂量不会产生明显的影响。

次级宇宙射线是高能初级宇宙射线与大气的作用产物。初级宇宙射线进入大气时,具有极大能量的粒子与大气中的原子核发生剧烈的碰撞作用,致使原子核四分五裂,这类核反应一般称之为"散裂反应""碎裂反应"

一般情况下,将宇宙射线按其能量大小习惯上分为"硬射线""软射线"两部分。""部分宇宙射线主要是指贯穿能力很强的高能粒子,主要指介子和高能质子;而""部分宇宙射线是指较易被物质吸收的低能粒子,主要指电子和光子。

当高能初级宇宙射线与大气的原子核发生核反应时,反应产物除了次级宇宙射线粒子以外,还有许多放射性核素,这些核素叫做"宇生放射性核素"。宇生放射性核素的品种虽然不少,但在空气中的含量都是很低的,因此,它们对环境辐射的实际贡献不大,特别是外照射。不过,有些核素在环境辐射剂量中的贡献是不可忽视的,而且在科学研究上也有较重要的意义。

原生放射性核素与宇生放射性核素同属天然放射性核素,两者的区别在于,后者由宇宙射线通过与大气原子核作用的产物,而前者则是从地球形成开始,迄今为止还存在于地壳中的那些放射性核素。因此被称为"原生"放射性核素。显而易见,与地球同时形成的放射性核素可能很多,其中,仅有少数具有足够长半衰期的放射性核素才有可能残存至今。

天然放射性核素品种很多,性质与状态也各不相同,它们在环境中的分布十分广泛。在岩石、土壤、空气、水、动植物、建筑材料、食品甚至人体内都有天然放射性核素的踪迹。地壳是天然放射性核素的重要贮存库,尤其是原生放射性核素。地壳中的放射性物质主要为铀、钍系和 。其中,空气中的天然放射性核素主要有地表释入大气中的 及其子体核素,动植物食品中的天然放射性核素大多数是 。

土壤主要由岩石的浸蚀和风化作用而产生的,可见,其中的放射性是从岩石转移而来的。由于岩石的种类很多,受到自然条件的作用程度也不尽一致,可以预期土壤中天然放射性核素的浓度变化范围是很大的。土壤的地理位置、地质来源、水文条件、气候以及农业历史等都是影响土壤中天然放射性核素含量的重要因素。

存在于岩石和土壤中的放射性物质,由于地下水的浸滤作用而受损失,地下水中的天然放射性核素主要来源于此途径。此外,粘附于地表颗粒土壤上的放射性核素,在风力的作用下,可转变成尘埃或气溶胶,进而转入到大气圈并进一步迁移到植物或动物体内。土壤中的某些可溶性放射性核素被植物根吸收后,继而输送到可食部分,接着再被食草动物采食,然后转移到食肉动物,最终成为食品中和人体中放射性核素的重要来源之一。环境水中天然放射性核素的浓度与多种因素有关。

此外,天然放射性物质还包括宇宙射线。宇宙射线是一种从宇宙空间射到地球上的高能粒子流,它由质子、 粒子等组成。天然放射性已为人类所适应,并未造成什么危害。

 

·                                 放射性活度是什么?

放射性活度(radioactivity)是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位是贝克勒尔(Becquerel),符号为Bq1Bq1次衰变/秒。单位质量或单位体积的放射性物质的放射性活度称为放射性比度,或比放射性(specific radioactivity)。

我们可用克镭当量来表示γ放射源的相对放射性活度。1克镭当量表示一个γ放射源的γ射线对空气的电离作用和1克的标准镭源(放在壁厚为0.5毫米的铂铱合金管内,且与其子体达到平衡的1克镭)相当,一克的镭放射性活度为3.7×1010Bq

·                                 什么是照射量?

所谓照射量是指射线对空气中的电离能力总量。在国际单位制中,其单位是伦琴(R)。它的定义是在标准状态下1立方厘米的空气(1.293毫克空气)中产生1静电单位电量。目前常用库伦每千克(C/kg)为单位。它相当于X或γ射线在标准状态下每千克干燥空气中产生一种符号离子的电荷值为2.58×10-4C,即1R=2.58×10-4C/kg。照射量只对空气而言,仅适用于X或γ射线。

还有一个概念是照射量率或照射率,它表示单位时间内照射量的增量。照射量率的国际单位为库伦每千克秒。

·                                 什么是吸收剂量?

吸收剂量是指单位质量物质接收电离辐射的平均能量。它是描述电离辐射能量的量。当电离辐射与物质作用时,其部分或全部能量可沉积于受照介质中。吸收剂量的单位是拉德(rad),相当于1克物质接受1×105焦尔的能量。目前常用的单位是戈瑞(Gy),它相当于1千克物质接受1焦尔的能量。1Gy=100rad

与照射量的情况不同,吸收剂量是一个适用于任何类型电离辐射和任何类型受照物质的辐射量。必须注意的是,在应用此量度时,要指明具体涉及的受照物质,诸如空气、肌肉或者其他特定材料。 而照射量与吸收剂量是两个意义完全不同的辐射量。照射量只能作为X或γ射线辐射场的量度,描述电离辐射在空气中的电离本领;而吸收剂量则可以用于任何类型的电离辐射,反映被照介质吸收辐射能量的程度。但是,在两个不同量之间,在一定条件下相互可以换算。对于同种类、同能量的射线和同一种被照物质来说,吸收剂量是与照射量成正比的。由于X或γ射线在空气中产生一对离子的平均能量约为32.5eV,所以1RX或γ射线在空气中的吸收剂量约为0.838rad;而在软组织中的吸收剂量约为0.931rad

·                                 什么是剂量当量?

环境电离辐射的生物效应不仅与吸收剂量值有关,而且还与辐射的类型、能量和照射条件有密切关系。换言之,在接受相同吸收剂量的情况下,如果电离辐射的种类、能量或照射条件不同,其所致的生物效应,无论是发生几率还是严重程度,均有所差异。例如,某一射线在组织内很短路上能产生很多的离子对,那么它对人体组织的损伤就大些。所以在相同吸收剂量下,快中子、 粒子对人体组织的损伤要比 、 或电子的损伤大好几倍。为了统一描述各类电离辐射对于生物体的危害程度,在核辐射防护领域中,引进了一种"剂量当量"的概念,它等于吸收剂量和描述不同射线生物效应的系数的乘积,其单位是雷姆(rem),目前采用的国际单位是希沃特(Sv)。1Sv=100rem

相同的吸收剂量未必产生同样程度的生物效应,因为生物效应受到辐射类型、剂量与剂量率大小、照射条件、生物种类和个体生理差异等因素的影响 。为了比较不同类型辐射引起的有害效应,在辐射防护中引进了一些系数,当吸收剂量乘上这些修正系数后,就可以用同一尺度来比较不同类型辐射照射所造成的生物效应的严重程度或产生机率。

·                                 什么是集体剂量当量?

在环境放射性中,人们经常须对环境辐射给予某一群体的危害作出科学的评价。例如当某一核设施向其环境排放放射性废物时,人们就要求对该企业排放的放射性三废给周围公众造成的剂量当量作出估计,以评价该群体受影响的程度。此时,须采用"集体剂量当量"的概念来评估,其定义是:辐射给予某一群体产生的效应是各个单一组分所受的剂量当量之总和。

剂量当量与集体剂量当量的区别在于,前者用于单个生物体,后者则用于群体。集体剂量当量的国际单位为人•希沃特,符号为manSv

·                                 有效剂量当量是什么?

有效剂量当量是考虑人体组织或器官发生的辐射效应为随机效应时,全身受到非均匀照射的情况下,人体各器官或组织所接受的平均剂量当量与相应的机重因子的乘积之总和,即为有效剂量当量。

有效剂量当量的SI单位与剂量当量相同,即希沃特(Sv),暂时并用的专用单位为雷姆(rem)。有效剂量当量是一个很重要的概念,它是一个度量体内或体外照射源(无论是均匀照射还是非均匀照射)造成的健康效应发生率的指标,用来评价电离辐射对人体的总的损伤程度。

下面的表格给出辐射量单位对照表,辐射量包括放射性物质的放射活度、辐射场强度以及被照物质的吸收剂量三方面内容。

辐射量单位对照表

辐射量

辐射量SI单位

SI单位专名

专用单位

照射量

库伦·千克-1C·kg-1)

未定

伦琴(R

1伦=2.58×10-4库伦·千克-11R2.58×10-4C·kg-1

吸收剂量

焦耳·千克-1J·kg-1

戈瑞(Gy

1戈瑞=1焦耳·千克-1100拉德(1Gy1J·kg-1102rad

拉德(rad

1拉德=10-2焦耳·千克-1100尔格·克-11rad10-2J·kg-1102erg·g-1

当量剂量

焦耳·千克-1J·kg-1

希沃特(Sv

1希沃特=1焦耳·千克-1100雷姆(1Sv1J·kg-1102rem

雷姆(rem

1雷姆=10-2焦耳·千克-11rem10-2J·kg-1

放射性活度

-1

s-1

贝可勒尔(Bq

1贝可勒尔=1次衰变秒-1

1Bq1次衰变s-1

居里(Ci

1居里=3.7×1010·秒-1
1Ci3.7×1010s-1

·                                 天然辐射的有效剂量大小如何?

天然辐射源产生的照射是的,比其辐射源产生的照射要高得多(表一)。因此,人为活动引进的天然辐射的升高所产生的剂量也有可能高于其它辐射源。但是,由于下述原因,天然辐射产生照射常常不引进人们的注意:(1)天然辐射自古以来就存在;(2)不经专门浓缩的天然放射性(如镭)是不可能对人产生急性照射的。

正常本底地区天然辐射源产生的年有效剂量当量估算值(UNSCEAR19821988))

年有效剂量当量(mSv

外照射

内照射

总计

宇宙射线

 

 

 

致电离成分

0.280.30

 

0.280.30

中子成分

0.0210.055

 

0.0210.055

宇生放射性核素

 

0.0150.015

0.0150.015

原生放射性

 

 

 

40K

0.120.15

0.180.18

0.300.33

87Rb

 

0.0060.006

0.0060.006

238U

0.090.10

0.951.239

1.041.340

232Th

0.140.16

0.190.176

0.330.34

合计

0.650.80

1.341.60

2.002.40

·                                 电离辐射如何伤害人体?

电离辐射穿过机体时,射线以两种方式作用于机体生命物质分子,即直接作用和间接作用,直接作用是指射线将能量直接交付给处在射线径迹上的生命物质分子(主要是DNA分子),并使之电离或者被激发而产生损伤。此过程中,接受射线能量的分子本身受到损伤。这是一个纯物理学过程。间接作用是指生命物质分子并未处在射线的径迹上从而也未直接接受到射线能量,射线的能量被生命物质分子周围的水分子或其他的分子所吸收从而被电离或者是活化,生成了自由基(即一种活性极高的原子团),然后经过一定距离的迁移,到达生命物质分子并与之发生化学反应,最终造成生命物质损伤。此过程中,水分子是射线能量的直接接受者,生命物质分子并未直接接受射线的能量,故而称作间接作用。间接作用过程中既有物理学过程,也有化学过程。

现以水分子为例,说明自由基的形成过程。

 

    上面反应式中的"OH""H"即是自由基。自由基的化学性质非常活泼,容易和各种分子(其中的也包括DNA分子)发生化学反应。

 

辐射诱发损伤形成过程示意图

当吸收的辐射剂量达到某一定水平时,细胞核内的DNA即可由于辐射的直接作用或者间接作用而受到损伤。已观察到的DNA损伤有多种形式,其中包括单链断裂、双链断裂和碱基损伤。辐射引致的DNA损伤被认为是辐射损伤的启动事件,即一切效应的起始点。

正常情况下,细胞能在数小时内把DNA分子的单链断裂或双链断裂修复。

受损伤的DNA的修复(也称作修复复制),是在有关酶的作用下,DNA分子中含有受损伤(单链断裂、碱基受损或其他的结构缺陷)的区段切除掉,并重新合成新连续性的双链。具体地说,就是在核酸内切酶的作用下把受损伤部位的DNA单链切割掉,再由DNA聚合酶合成一条与其相对应的另一条单链互补的新的单链。

 

DNA分子结构示意图

 

DNA分子螺旋结构模型

大多数情况下,DNA损伤能被正常地修复。不过,有时也会出现修复错误,即在修复DNA分子的过程当中,把碱基对的顺序排错,碱基对顺序错误有多种:有的是在应该是嘌呤的位置上出现了密啶或者在应该是密啶的位置上出现了嘌呤(这种错误叫做颠换);有的是在应该是A的位置上出现了G或者在是T的位置上出现了C,或者反过来(这种错误叫做转换);有的是在正常的顺序中多出了一个碱基对(这种错误叫做插入);有的是在正常的顺序中缺少了一个碱基对(这种错误叫做缺失);还有的是在正常的顺序中出现一段碱对顺序颠倒(这种错误叫做倒位)

正象上面所说的,细胞的正常生命过程是由细胞核内染色体上携带的基因(DNA分子上碱基对的排列顺序)中预先编制好的程序所决定,如果DNA分子上的碱基对顺序出现了变化,预先编制的程序就被打乱,细胞的正常生命过程也随之而出现混乱,即发生了突变。

基因的突变对细胞生命过程的影响可以是不同的。有一些基因对细胞的生存是至关重要的,这种基因内出现的突变,使得突变的细胞或者不能继续生存下去,或者突变细胞本身虽能生存但不能进行细胞分裂。这两种情况都叫做细胞死亡。辐射引致的细胞死亡多是后一种类型的死亡,即辐射使受到照射的细胞丧失增殖能力,辐射的这种作用叫做杀死细胞作用。另外,辐射直接或者间接地作用于细胞膜,引起细胞破损也能造成细胞死亡,不过,这往往在辐射剂量很高时才会出现。在辐射防护通常所关心的低剂量范围内,细胞死亡的机制还多是细胞的基因发生了突变。细胞死亡是辐射引起确定性效应的基础。

细胞死亡时间可因受损伤细胞群本的不同而有所不同。在细胞分裂迅速的细胞群体(如血液中的淋巴细胞),细胞死亡可在受到照射后的数小时表现出来,在细胞分裂极其缓慢的细胞群体(如神经细胞等),死亡可能在数个月甚至数年内也不会发生。

另一种可能的情况是修复DNA损伤过程中所产生的碱基对排列错误(突变)出现在对于细胞生存并非到关重要的一些基因内。这时,携带有突变基因的细胞仍能继续生存并继续进行细胞分裂,但是,细胞的某些性质由于突变基因的存在而发生变化,有可能出现一些正常情况下该种细胞所不具有的性质。这种情况叫做细胞变异。如果细胞变异出现在体细胞内,并使细胞变得具有肿瘤()细胞的性质(如癌细胞特征性的潜在的无限增殖的能力、侵袭相邻组织的能力以及向远外转移的能力等),就叫做恶性转化。辐射引起体细胞恶性转化就是辐射的致癌作用。如果出现变异的细胞是生殖细胞(精细胞或卵细胞,或两者),则变异的影响将会在由这种生殖细胞产生的胚胎(也即此胚胎发育成的个体)以及其繁衍的所有的后代中表现出来,这就是遗传效应。辐射在生殖细胞内诱发的基因突变是产生辐射遗传效应的基础。辐射防护中将人的生殖腺(睾丸和卵巢)列为关键器官正是出于防止出现辐射遗传效应的考虑。

须指出的是,尽管辐射致癌和辐射诱发遗传损伤在诱发机制上有相似之处,不过,两者之间还是不完全一样。通常认为,辐射在生殖细胞中诱发的突变是一种单次生物学事件,而辐射致癌则是一种有许多阶段组成的多阶段过程,辐射引致细胞变异可能是其中的一个阶段(不过是非常重要的启动阶段)。很有可能,辐射在启动以后的某些阶段中还起有作用。

·                                 人体受到的伤害同有效剂量的关系是怎样的?

电离辐射的能量沉积是一种随机性过程,因此,即使在剂量很小的上,也完全可能在细胞内的关键体积中沉积下足够的能量,并导致细胞变异。由于单个细胞的细胞变异而产生的生物学效应(即遗传变化和细胞恶性转化)的发生,也是随机性事件。因此,我们将这类辐射生物学效应称为随机性效应,以与另一类其发生不具随机性的效应相区别。随机性效应的特征是,其发生不具有阈值,这就是说,即使在剂量很小的情况下也存在有一定的概率;这类效应发生的概率是随着剂量的增高而增加,效应的严重程度与剂量无关。随机性效应的这些特点都是由其发生机制所决定的。

另一种情况是全部组织或者部分组织受到照射,构成该组织的相当数量的细胞被杀死,而这些细胞又不能由存活下来的细胞的增殖来补偿,从而使得该种组织或者由该种组织构成器官功能受到影响并产生临床上可检查出的症状,通过这样的发生机制产生的效应被称为确定性效应。

过去曾因为这类效应的发生不具随机性而将其称作"非随机性效应"。但是,此类效应所基于的机制(辐射杀死细胞)本身又是一种随机过程,因而称为"非随机性效应"并不十分合适。在《国际放射防护委员会1990年建议书》中,开始用"确定性效应"一词来取代"非随机性效应"。确定性效应的意思是:"由已发生的事件所确定的后果",这就是说,确定性效应是由"辐射杀死细胞"这种事件所确定下的,虽然杀死细胞的事件本身具有随机性。

电离辐射所引致的确定性效应是由于全身或者局部照射的照射量达到可使足够的细胞损伤或者发生死亡,因而影响到受照组织或器官功能所造成的,这种损伤是相当多数量的细胞或者相当大比例的细胞集体受损的结果。在大多数情况下,一个或者少量细胞的死亡在由无数细胞构成的组织中不会产生任何影响的。这就是说,任何一种确定性效应是有一定数量或者一定比例的细胞受到影响时才会发生。因此,确定性效应应有一个阈剂量,低于此阈剂量时受到影响的细胞数或者比例不足以产生所定义的损伤或者不足以使该种效应的临床症状发生。随着剂量的增加,未受影响的活细胞将越来越少,症状也越来越严重,症状发生率也越来越高,因此,确定性效应的发生率和严重程度均随剂量的增加而增加。由此可见,确定性效应的特征正好与随机性效应的相反,即具有一种阈剂量。剂量低于阈剂量时效应发生的概率一般应为零;效应的严重程度与所接受的剂量有关,剂量越高,效应越严重;如果,辐射照射足够严重,则作为照射的后果,可能会发生死亡。一般说,死亡是人体的一个或多个关键器官或者关键系统中细胞数量严重减少的结果。

概括来说,可以认为辐射生物效应的两种分类系统之间,有着这样的关系,即:


从上面的关系,可以看到躯体效应中的非致癌效应是确定性效应,而躯体效应中的致癌效应是随机性效应,遗传效应则均是随机效应。

上述的这种分类,是对辐射生物学效应的发生机制进行深入研究后取得的成果,并在辐射防护的发展中产生过巨大的影响。随着对不同的辐射生物学效应的区分,国际放射防护委员会在其1977年建议书中,将辐射防护的目的明确地规定为"辐射防护的目的在于防止有害的非随机性效应(即确定性效应),并限制随机性效应的发生率,使之达到被认为是可以接受的水平"。也就是说,在辐射防护实践中,对不同的效应应该采取不同对策,对于确定性效应,因其有阈剂量,而且因为剂量低于阈剂量时其发生的概率为零,所以,能够"防止"其发生;对于随机性效应,因其发生的无阈性质,在任何低的剂量下均有一定的发生概率,所以,"防止"这类效应的发生客观上是不可能的,只能通过各种措施降低剂量,对其进行"限制",使这类效应的发生概率降低到"可以接受的水平"(不是无限制的降低)

·                                 什么是电离辐射的遗传效应?

如果某个生物体在受到电离辐射照射时其生殖细胞也受到照射,而且受照射的生殖细胞内产生了发生突变的基因,则情况会不同。一般情况下,如果这种基因突变没有造成受照射的生殖细胞死亡,而且该生殖细胞有可能与异性的生殖细胞结合形成胚胎,则电离辐射照射的后果就有可能在该受照生物体的后代中表现出来。这类在受照个体的子代个体中出现的辐射生物学效应叫做辐射遗传效应。

·                                 辐射遗传效应的特点是什么?

辐射遗传效应是生物体的生殖细胞受到照射而产生的后果,通常辐射遗传效应具有以下一些特点:

  1. 遗传效应并不在受到照射的个体本身出现,而是出现在该个体所繁衍的某些后代身上,因而效应的产生与个体受照射情况的联系不易被发现;
  2. 从生物体受照到显现出遗传效应之间相隔的时间过长(超过了生物体寿命,有时甚至为寿命的数倍,即几个世代);
  3. 遗传效应具有可遗传性,所以,从理论上讲,其影响可能极大。

关键词:Inspector  多功能核辐射检测仪  

版权声明

凡本网注明"来源:易推广"的所有作品,版权均属于易推广,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内

使用,并注明"来源:易推广"。违者本网将追究相关法律责任。

本信息由注册会员:厦门欣锐仪器仪表有限公司 发布并且负责版权等法律责任。

最新产品 - 今日最热门报道-分类浏览 - 每日产品
  • 易推广客服微信